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Setup

Let G = (G, ·) be a finite, nonabelian group, center Z and commutator
subgroup [G,G].
Denote by Ab(G) the set of endomorphisms  : G ! G with  (G)
abelian.
Recall [K., 2021] any  2 Ab(G) gives a regular, G-stable subgroup
N := {⌘g : g 2 G} of Perm(G), where

⌘g[h] = g (g�1)h (g).

Regular, G-stable subgroups N  Perm(G) give
skew left braces;
solutions to the Yang-Baxter equation; and
Hopf-Galois structures on a G-extension of fields, and the type of
the structure is the abstract group isomorphic to N.
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Regular, G-stable subgroups give braces

A skew left brace (hereafter, brace) is a triple (B, ·, �) where (B, ·) and
(B, �) are groups and

a � (b · c) = (a � b) · a
�1 · (a � c)

holds for all a, b, c 2 B, where a ·a�1 = 1B. Childs denotes this (B, �, ·).
The two simplest examples:

Example
For (G, ·) any group, the triple (G, ·, ·) is a brace. We call this the trivial

brace on G.

Example
For (G, ·) any nonabelian group, and define g ·0 h = hg for all g, h 2 G.
Then the triple (G, ·, ·0) forms the almost trivial brace on G.
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Regular, G-stable subgroups give braces
A skew left brace (hereafter, brace) is a triple (B, ·, �) where (B, ·) and
(B, �) are groups and

a � (b · c) = (a � b) · a
�1 · (a � c)

holds for all a, b, c 2 B, where a ·a�1 = 1B. Childs denotes this (B, �, ·).

Properties and Conventions
(B, ·) and (B, �) have the same identity 1B.
We write the inverse to a 2 (B, �) by a.
We will frequently write a · b as ab.

Example (K, 2021)
Let  2 Ab(G), and define

g � h = ⌘g[h] = g (g�1)h (g).

Then (G, ·, �) is a brace.
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A conceptual break from earlier works

There is a well-known connection between regular, G-stable
subgroups N of Perm(G) and braces. If { : N ! G is given by
{(⌘) = ⌘[1G] then one defines an operation � on N via:

⌘ � ⇡ = {�1({(⌘) ⇤G {(⇡)).

One then has a brace (N, ·, �) with (N, ·)  Perm(G, �).

That’s not what’s happening in our construction.

g � h = ⌘g[h] = g (g�1)h (g).

Our brace is (G, ·, �) with (G, �)  Perm(G, ·).
This works because both (G, ·, �) and (G, �, ·) are braces (i.e., (G, ·, �)
is a bi-skew brace).
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Braces give solutions to the Yang-Baxter equation

A set-theoretic solution to the Yang-Baxter equation (hereafter, solution

to the YBE) is a set B and a map R : B ⇥ B ! B ⇥ B such that

(R ⇥ idB)(idB ⇥ R)(R ⇥ idB) = (idB ⇥ R)(R ⇥ idB)(idB ⇥ R) : B
3 ! B

3.

A solution R(x , y) = (�x(y), ⌧y (x)) is non-degenerate if �x and ⌧y are
bijections, involutive if R2 = idB⇥B.

Generally, a brace (B, ·, �) gives non-degenerate solutions:

R(a, b) = (a�1(a � b), a�1(a � b) � a � b)

R
�1(a, b) = ((a � b)a�1, (a � b)a�1 � a � b).

Note that R is involutive if and only if (B, ·) is abelian.
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Abelian maps and solutions

R(a, b) = (a�1(a � b), a�1(a � b) � a � b)

R
�1(a, b) = ((a � b)a�1, (a � b)a�1 � a � b).

Example (K., 2021)
For  2 Ab(G) we get the following solutions with underlying set G:

R(g, h) = ( (g�1)h (g), (hg
�1)h�1 (g)g (g�1)h (gh

�1))

R
�1(g, h) = (g (g�1)h (g)g�1, (h)g (h�1))

Note. There are two more solutions because (G, ·, �) is a bi-skew
brace, but we will not directly address the other two here.
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More maps

Denote by Map(G) the set of all functions on G.

With the binary operations

(↵+ �)(g) = ↵(g)�(g), ↵�(g) = ↵(�(g)), g 2 G

we have a right near-ring structure on Map(G), i.e.,

(Map(G),+) is a (nonabelian) group;
“multiplication” is associative; and
(↵+ �)� = ↵� + �� for all ↵,�, � 2 Map(G).

For n 2 Z we write n 2 Map(G) to represent g 7! gn.

So 0, 1 2 Map(G) are the trivial and identity map respectively.

Note that both Ab(G) and End(G) are contained in Map(G) but are not
subgroups.
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Last year’s Omaha construction

Let  2 Ab(G).

Define { n : n � 0} by  n = �(1 �  )n + 1.

For example,  0 = 0,  1 =  ,  2 = 2 �  2.

Then  n 2 Ab(G) for n.

Theorem (K., 2022)
Let n � 0 and g �n h = g n(g�1)h n(g). Then (G, ·, �n) is a brace.

Furthermore, for all m � 0, (G, �m, �n) is a brace.

We say G, together with {�n : n � 0}, form a brace block.
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Brace blocks

A brace block is a set B and a family {�n : n 2 I}, I an index set such
that (B, �m, �n) is a brace for all m, n 2 I.

We will denote this brace block by (B, {�n : n 2 I})

Such braces are necessarily bi-skew.

Short examples:
(G, {·}) is the trivial brace block.
If (G, ·, �) is a bi-skew brace, then (G, {·, �}) is a brace block.
If  2 Ab(G) then (G, {�n : n � 0}) is a brace block.
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Generalizations: C-S 2021 v. 1

The work on abelian maps and brace blocks is generalized in
[Caranti-Stefanello 2021, v. 1].

The condition  2 Ab(G) can be relaxed: one can, for example, take
 2 End(G) such that  ([G,G])  Z (G).

We call such maps commutator-central and denote the set of all
commutator central maps by CC(G).

Additionally, [C-S 21 v. 1] replaces  n = �(1 �  )n + 1 with
 n 2  Z[ ] ⇢ Map(G) and creates a brace block with binary
operations given recursively by

g �n h = g �n�1  n(g) �n�1 h �n�1  ̂n(g),

where g �n�1 eg = 1G.
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Generalizations: B-N-Y 2022

Bardakov, Neshchadim, and Yadav talk about brace systems: a set G

and a graph (V ,E) where the vertices are binary operations and
directed edges · ! � give braces (G, ·, �).

A double-arrow corresponds to a “symmetric brace”, i.e., bi-skew
brace.

They use “�-homomorphisms” to construct brace blocks, which
encompasses [K, 2022] and [C-S 21 v. 1].

These are also constructed recursively: a �i+1 b = a �i �a(b) where
�a : G ! Aut(G) satisfies certain properties.
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Motivation for current work

g �n h = g �n�1  n(g) �n�1 h �n�1  ̂n(g)

a �i+1 b = a �i �a(b)

Thoughts on seeing this construction
Given the lack of “natural ordering” in the  n’s, the recursive
nature to these definitions seems “artificial”.
It would be nice to write the binary operations non-recursively.
A priori, there seems to be no reason why a brace block needs to
be constructed as a sequence.
The jump from my prescribed family of maps  n = �(1 �  )n + 1
to the family in [C-S, 2021, v.1] or [B-N-Y 2022] is a significant
one. Can we generalize even more?
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The main construction

Throughout, fix  2 CC(G).

Note that  2 CC(G) means that  (gh) =  (hg)z for some z 2 Z .

Let E be the elements of Map(G) which decompose as a sum of
endomorphisms.

So E = {↵ : ↵ = �1 + �2 + · · ·+ �n, �i 2 End(G)} ⇢ Map(G).

Note End(G) $ E $ Map(G) since �1 : g 7! g�1 /2 End(G) and, e.g.,
↵(1G) = 1G for all ↵ 2 E .

Let  ↵ =  ↵, and define

g �↵ h = g ↵(g)h ↵(g)
�1.

Alan Koch (Agnes Scott College) 16 / 38



g �↵ h = g ↵(g)h ↵(g)�1

Special cases:

↵ = 0 : g �↵ h = gh

↵ = �1 : g �↵ h = g (g)�1h (g) = g � h [K, 2021]
↵ = 1 : g �↵ h = g (g)h (g)�1 [C-S 21 v. 1]

↵ =
P

n�1
i=0 (�1)i

�
n

i

�
 i : g �↵ h = g �n h [K, 2022]

We also get the C-S 21 v. 1 blocks obtained from elements of  Z[ ].

Theorem (K, c. 2023)
Let  2 CC(G), ↵,� 2 E . Then (G, �↵, ��) is a brace.

In other words,

(G, {�↵ : ↵ 2 E })

is a brace block.
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g �↵ h = g ↵(g)h ↵(g)�1

More observations:

g �↵ h = g �� h for all g, h 2 G if and only if  (↵� �)(G)  Z .
If ↵ and � consist of the same endomorphisms, used the same
number of times, then g �↵ h = g �� h for all g, h 2 G.
For example,

 ((�1 + �2)� (�2 + �1))(g) =  
⇣
�1(g)�2(g)(�2(g)�1(g))

�1
⌘

=  
⇣
�1(g)�2(g)�1(g)

�1�2(g)
�1

⌘
2 Z

So the ordering of the endomorphisms in an element of E doesn’t
matter: we can think of E as the free abelian group generated by
End(G).
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Back to the YBE

Each brace (G, �↵, ��) in a brace block gives (potentially) two solutions
to the YBE:

R(g, h) = (eg �↵ (g �� h), eg �↵ (g �� h) �� g �� h)

R
�1(g, h) = ((g �� h) �↵ eg, (g �� h) �↵ eg �� g �� h)

where g �↵ eg = g �� g = 1G.

These can be written out in terms of  ↵, �.
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g �� h = g �(g)h �(g)�1

Using  2 CC(G),� 2 E we get a regular, G-stable subgroup
N  Perm(G) in a way analogous to what we had previously:
N = {⌘(�)g : g 2 G} with

⌘(�)g [h] = g �� h = g �(g)h �(g)
�1.

That is,

⌘(�)g = �(g �(g))⇢( �(g))

= �(g)C( �(g)),

with C : G ! Inn(G) being the conjugation map.
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Hopf-Galois structure: ⌘(�)g [h] = g �(g)h �(g)�1

Let L/K be a Galois extension with Gal(L/K ) = G.

Let N = N� be as above (depending on  ,�).

Then G acts on L[N] by

k (`⌘(�)g ) = k(`)⌘(�)
kg �(g)k�1 �(g)�1 , g, k 2 G, ` 2 L.

Let H = L[N]G. Then L/K is an H-Galois extension.

So L/K has Hopf-Galois structures of type isomorphic to (G, ��) for all
� 2 E .

Fact. Gp-Like(H) = {⌘(�)g 2 N : g �(g) 2 Z} = {⇢(g�1) : g �(g) 2 Z}.
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More HGS

Since (G, �↵, ��) is a brace, we have more Hopf-Galois structures,
though not necessarily on the same extension L/K .

We have N� = {⌘(�)g : g 2 G}  Perm(G) = Perm(G, �↵) is regular.

It is also (G, �↵)-stable: k⌘(�)g = ⌘(�)
k�↵(g��ek)

= ⌘(�)
(k�↵h)��k

, k �↵ ek = 1G.

For fixed � 2 E , N�  Perm(G, �↵) is regular, (G, �↵)-stable and hence
yields a Hopf-Galois structure on each (G, �↵)-Galois extension,
↵ 2 E .
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Nilpotency class two

We say G (still nonabelian) has nilpotency class two if [G,G]  Z .

Examples:
D4, dihedral group, order 8: [G,G] = Z = hr2i;
Q8, quaternion group: [G,G] = Z is the subgroup of order 2;
H(p), the Heisenberg group mod p: [G,G] = Z cyclic, order p;
extraspecial groups: p-groups with Z ⇠= Cp and G/Z ⇠= C

n�1
p

(|G| = pn).

Nilpotency class two
We have  = 1 2 CC(G), and there is no reason to consider any other

choice of  .

The brace block with  = 1 will contain every brace block on G starting
with some choice of  2 CC(G).
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On opposites

Recall: for (B, ·, �) a brace we have (B, ·0, �) is also a brace, where
a ·0 b = b · a for all a, b 2 B. We call (B, ·0, �) the opposite brace to
(B, ·, �).

Example
The almost trivial brace is the opposite brace to the trivial brace (and
vice versa).

If we choose  = 1 then we can pick ↵ = �1 and obtain

g �↵ h = g↵(g)h↵(g)�1 = gg
�1

hg = hg = g ·0 h.

As choosing ↵ = 0 2 E always gives the trivial brace, we obtain:

If G has nilpotency class two, then any maximal brace block contains
both the trivial brace and the almost trivial brace on G.
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An equivalent opposite

What about opposites for (G, ·, �↵)?

A general observation
Given (B, ·, �) define a binary operation �̂ by

a �̂b = (a�1 � b
�1)�1, a, b 2 B.

Then (B, ·, �̂) is a brace, and (B, ·, �̂) ⇠= (B, ·0, �) via a 7! a�1.

If G is any finite nonabelian group,  2 CC(G), ↵ 2 E we have

g �̂h = (g�1 �↵ h
�1)�1

= (g�1 ↵(g
�1)h�1 ↵(g

�1)�1)�1

=  ↵(g
�1)h ↵(g

�1)�1
g

Alan Koch (Agnes Scott College) 27 / 38



g �̂h =  ↵(g�1)h ↵(g�1)�1g

Assume G has nilpotency class two, and let  = 1 2 CC(G).
So

g �̂↵h = ↵(g�1)h↵(g�1)�1
g.

For ↵ = �1 + · · ·+ �t 2 E , let ↵⇤ = �t + · · ·+ �1 2 E .
Let � = �1 + ↵(�1) = �1 � ↵⇤ 2 E . Then �(g) = g�1↵(g�1) and

g �� h = g�(g)h�(g)�1

= g(g�1↵(g�1))h(g�1↵(g�1))�1

= ↵(g�1)h↵(g�1)�1
g

= g �̂↵h

If  = 1 then (G, ·, �↵) is in a brace block if and only if (G, ·, �↵) is.

This does not happen for general  (hence, for general G).
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Example: Q8

Let L/K be a Galois extension, Galois group G = Q8.

Write Q8 = ha, b : a4 = b4 = a2b2 = abab�1 = 1Gi.

We will cast the results to follow in terms of regular subgroups rather
than braces.

Regular subgroups of Perm(Q8) are classified in [Taylor-Truman,
2019]. There are 22 subgroups:

Type C2 ⇥ C2 ⇥ C2: 2 structures
Type C4 ⇥ C2: 6 structures

Type C8: 6 structures
Type Q8: 2 structures
Type D4: 6 structures
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Some endomorphisms
Let s, t 2 {a, b, ab}, s 6= t . Consider the following elements of End(G):

�0 �1 �2 �3 �4
s 1G s3t s2t t s3

t 1G s3 s3 st st

.

For ↵ 2 E given by:
1 ↵ = �0 = 0 ) N = �(G) ⇠= G.
2 ↵ = 1 ) N = ⇢(G) ⇠= G.
3 ↵ = �1 ) N = h�(s)⇢(t),�(s2),�(t)⇢(st)i ⇠= C2 ⇥ C2 ⇥ C2.
4 ↵ = �2 + �3 ) N = h�(s), ⇢(t)i ⇠= C4 ⇥ C2.
5 ↵ = �4 ) N = h⇢(s),�(s)⇢(t)i ⇠= D4.
6 ↵ = �1 � �4 ) N = h�(s),�(t)⇢(s)i ⇠= D4.

It turns out that by varying s, t we get all regular, G-stable subgroups of
Perm(Q8) except those of cyclic type.
This gives rise to a brace block with 16 different operations.
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A brace block of size 16

�1 �2 �3 �4
s s3t s2t t s3

t s3 s3 st st

N = {�(g↵(g))⇢(↵(g)) : g 2 G}

1 ↵ = 0 ) N = �(G) ⇠= G.
2 ↵ = 1 ) N = ⇢(G) ⇠= G.
3 ↵ = �1 ) N = h�(s)⇢(t),�(s2),�(t)⇢(st)i ⇠= C2 ⇥ C2 ⇥ C2.
4 ↵ = �2 + �3 ) N = h�(s), ⇢(t)i ⇠= C4 ⇥ C2.
5 ↵ = �4 ) N = h⇢(s),�(s)⇢(t)i ⇠= D4.
6 ↵ = �1 � �4 ) N = h�(s),�(t)⇢(s)i ⇠= D4.

Remarks.
This block is maximal: we cannot pick ↵ to get N ⇠= C8 since
|�(g ↵(g))⇢( ↵(g))|  lcm(|g ↵(g)|, | ↵(g)|).
Neither (4) nor (6) above can be obtained with some ↵ 2 End(Q8).
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The opposite

Recall: if G has nilpotency class two, then �̂↵ is in the brace block
(G, {�↵ : ↵ 2 E }) (setting  = 1).

For general G, there are other cases where this may occur, a simple
example being (G, {·, ·0}).

If the nilpotency class is greater than 2, is there a condition to
determine when �̂↵ will be in a brace block containing (G, ·, �↵)?

Such a condition would presumably depend not just on G but on the
particular choice of  .

Under what conditions will a brace block contain both (G, �↵, ��) and
(G, �0↵, ��) (or (G, �↵,b��))?
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Do we find all brace blocks with underlying group G?

No.

Example
Let G = Sn, n � 5. We have [Sn,Sn] = An, Z = {◆}.
If  2 CC(G) then An ✓ ker .
So

 (�) =

(
◆ � 2 An

⌧ � /2 An

, ⌧ 2 Sn, ⌧
2 = ◆.

Let  , 0 2 CC(G) be such that  (G) = h(12)i,  0(G) = h(34)i.
Since  ↵(G) ✓  (G) = h(12)i we see that  0 6=  ↵ for any ↵ 2 E .
So the circle operations given by  , 0 do not appear in the same
brace block.
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To reinterate: no

 (G) = h(12)i := h⌧i,  0(G) = h(34)i := h⌧ 0i

Denote the corresponding binary operations by � and ? respectively.

Clearly, (G, ·, �) and (G, ·, ?) are biskew braces (since  , 0 2 Ab(G)).

However, we can show that (G, �, ?) is a biskew brace as well: it
follows from the fact that ⌧⌧ 0 = ⌧ 0⌧ .

Thus, (G, {·, �, ?}) is a brace block.

This quickly generalizes to brace blocks with up to 2bn/2c groups, each
isomorphic to Sn or An ⇥ C2.

Can this be extended in a reasonable way to find all brace blocks?

If so, it would also find all bi-skew braces.
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Opportunity: HGS of abelian type

In the classic, recursive constructions, only one abelian group arises in
a brace block: if (G, �n) is abelian, then (G, �n+1) = (G, �n).
Thus we could not obtain any nontrivial braces (B, ·, �) with both (B, ·)
and (B, �) abelian.
Equivalently, we could not use the theory to find Hopf-Galois structures
on an abelian extension of abelian type.
It is possible now.

Example
Return to G = Q8 = ha, bi. Let �1(a) = a3b, �1(b) = a3, �2(a) =
a2b, �2(b) = a3, �3(a) = b, �3(b) = ab.
Let ↵ = �1 and � = �2 + �3.
Then (G, �↵) ⇠= C2 ⇥ C2 ⇥ C2 and (G, ��) ⇠= C4 ⇥ C2.
This gives a HGS on a C2 ⇥ C2 ⇥ C2 extension of type C4 ⇥ C2 and
vice versa.
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Problem: E is messy

E is very large.

Example
There are 30 HGS on an S5-extension [Carnahan-Childs, 99], hence at
most 30 bi-skew braces (G, ·, �) with (G, ·) = S5.
Let  = 1.
End(S5) has 146 elements, including 120 automorphisms.
So E contains, among other things, all sums of elements of End(S5).
So E has many more than 2146 ⇡ 1044 elements.

In general, many ↵ 2 E give identical braces.
It would be good to have an effective way to pick “different” ↵’s.
Say E / ⇠, where ↵ ⇠ � )  (↵� �) ⇢ Z .

Alan Koch (Agnes Scott College) 37 / 38



Thank you.
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