Commutator-central maps, brace blocks, and Hopf-Galois extensions

Alan Koch

Agnes Scott College

May 31, 2022

A D M A A A M M

Alan Koch (Agnes Scott College)

Background

- 2 Commutator-Central Maps: A New Construction
- Bopf-Galois Structures
- 4 Special Case: Nilpotency Class Two

5 Next

Setup

Let $G = (G, \cdot)$ be a finite, nonabelian group, center Z and commutator subgroup [G, G].

Denote by Ab(G) the set of endomorphisms $\psi : G \to G$ with $\psi(G)$ abelian.

Recall [K., 2021] any $\psi \in Ab(G)$ gives a regular, *G*-stable subgroup $N := \{\eta_g : g \in G\}$ of Perm(*G*), where

$$\eta_{g}[h] = g\psi(g^{-1})h\psi(g).$$

Regular, G-stable subgroups $N \leq Perm(G)$ give

- skew left braces;
- solutions to the Yang-Baxter equation; and
- Hopf-Galois structures on a *G*-extension of fields, and the *type* of the structure is the abstract group isomorphic to *N*.

Regular, G-stable subgroups give braces

A *skew left brace* (hereafter, *brace*) is a triple (B, \cdot, \circ) where (B, \cdot) and (B, \circ) are groups and

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c)$$

holds for all $a, b, c \in B$, where $a \cdot a^{-1} = 1_B$. Childs denotes this (B, \circ, \cdot) . The two simplest examples:

Example

For (G, \cdot) any group, the triple (G, \cdot, \cdot) is a brace. We call this the *trivial* brace on *G*.

Example

For (G, \cdot) any nonabelian group, and define $g \cdot h = hg$ for all $g, h \in G$. Then the triple (G, \cdot, \cdot) forms the *almost trivial brace* on *G*.

・ロト ・ 四ト ・ ヨト ・ ヨト

Regular, G-stable subgroups give braces

A *skew left brace* (hereafter, *brace*) is a triple (B, \cdot, \circ) where (B, \cdot) and (B, \circ) are groups and

$$\mathbf{a} \circ (\mathbf{b} \cdot \mathbf{c}) = (\mathbf{a} \circ \mathbf{b}) \cdot \mathbf{a}^{-1} \cdot (\mathbf{a} \circ \mathbf{c})$$

holds for all $a, b, c \in B$, where $a \cdot a^{-1} = 1_B$. Childs denotes this (B, \circ, \cdot) .

Properties and Conventions

- (B, \cdot) and (B, \circ) have the same identity 1_B .
- We write the inverse to $a \in (B, \circ)$ by \overline{a} .
- We will frequently write $a \cdot b$ as ab.

Example (K, 2021)

Let $\psi \in Ab(G)$, and define

$$\boldsymbol{g} \circ \boldsymbol{h} = \eta_{\boldsymbol{g}}[\boldsymbol{h}] = \boldsymbol{g}\psi(\boldsymbol{g}^{-1})\boldsymbol{h}\psi(\boldsymbol{g}).$$

Then (G, \cdot, \circ) is a brace.

Alan Koch (Agnes Scott College)

A conceptual break from earlier works

There is a well-known connection between regular, *G*-stable subgroups *N* of Perm(*G*) and braces. If $\varkappa : N \to G$ is given by $\varkappa(\eta) = \eta[\mathbf{1}_G]$ then one defines an operation \circ on *N* via:

$$\eta \circ \pi = \varkappa^{-1}(\varkappa(\eta) *_{\mathbf{G}} \varkappa(\pi)).$$

One then has a brace (N, \cdot, \circ) with $(N, \cdot) \leq \text{Perm}(G, \circ)$.

That's not what's happening in our construction.

$$g \circ h = \eta_g[h] = g\psi(g^{-1})h\psi(g).$$

Our brace is (G, \cdot, \circ) with $(G, \circ) \leq \text{Perm}(G, \cdot)$.

This works because both (G, \cdot, \circ) and (G, \circ, \cdot) are braces (i.e., (G, \cdot, \circ) is a *bi-skew brace*).

Braces give solutions to the Yang-Baxter equation

A set-theoretic solution to the Yang-Baxter equation (hereafter, solution to the YBE) is a set B and a map $R : B \times B \to B \times B$ such that

 $(R \times \mathrm{id}_B)(\mathrm{id}_B \times R)(R \times \mathrm{id}_B) = (\mathrm{id}_B \times R)(R \times \mathrm{id}_B)(\mathrm{id}_B \times R) : B^3 \to B^3.$

A solution $R(x, y) = (\sigma_x(y), \tau_y(x))$ is *non-degenerate* if σ_x and τ_y are bijections, *involutive* if $R^2 = id_{B \times B}$.

Generally, a brace (B, \cdot, \circ) gives non-degenerate solutions:

$$R(a,b) = (a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b)$$
$$R^{-1}(a,b) = ((a \circ b)a^{-1}, \overline{(a \circ b)a^{-1}} \circ a \circ b).$$

Note that *R* is involutive if and only if (B, \cdot) is abelian.

$$R(a,b) = (a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b)$$
$$R^{-1}(a,b) = ((a \circ b)a^{-1}, \overline{(a \circ b)a^{-1}} \circ a \circ b).$$

Example (K., 2021)

For $\psi \in Ab(G)$ we get the following solutions with underlying set G:

$$egin{aligned} & R(g,h) = (\psi(g^{-1})h\psi(g),\psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})) \ & R^{-1}(g,h) = (g\psi(g^{-1})h\psi(g)g^{-1},\psi(h)g\psi(h^{-1})) \end{aligned}$$

Note. There are two more solutions because (G, \cdot, \circ) is a bi-skew brace, but we will not directly address the other two here.

Denote by $M_{ap}(G)$ the set of all functions on *G*. With the binary operations

 $(\alpha + \beta)(g) = \alpha(g)\beta(g), \ \alpha\beta(g) = \alpha(\beta(g)), \ g \in G$

we have a right near-ring structure on Map(G), i.e.,

- (Map(G), +) is a (nonabelian) group;
- "multiplication" is associative; and
- $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$ for all $\alpha, \beta, \gamma \in Map(G)$.

For $n \in \mathbb{Z}$ we write $n \in Map(G)$ to represent $g \mapsto g^n$.

So $0, 1 \in Map(G)$ are the trivial and identity map respectively. Note that both Ab(G) and End(G) are contained in Map(G) but are not subgroups.

3

・ロト ・四ト ・ヨト ・ヨト

Let $\psi \in Ab(G)$.

Define $\{\psi_n : n \ge 0\}$ by $\psi_n = -(1 - \psi)^n + 1$.

For example, $\psi_0 = 0$, $\psi_1 = \psi$, $\psi_2 = 2\psi - \psi^2$.

Then $\psi_n \in Ab(G)$ for *n*.

Theorem (K., 2022)

Let $n \ge 0$ and $g \circ_n h = g\psi_n(g^{-1})h\psi_n(g)$. Then (G, \cdot, \circ_n) is a brace. Furthermore, for all $m \ge 0$, (G, \circ_m, \circ_n) is a brace.

We say *G*, together with $\{\circ_n : n \ge 0\}$, form a *brace block*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A *brace block* is a set *B* and a family $\{\circ_n : n \in \mathcal{I}\}, \mathcal{I}$ an index set such that (B, \circ_m, \circ_n) is a brace for all $m, n \in \mathcal{I}$.

We will denote this brace block by $(B, \{\circ_n : n \in \mathcal{I}\})$

Such braces are necessarily bi-skew.

Short examples:

- $(G, \{\cdot\})$ is the trivial brace block.
- If (G, \cdot, \circ) is a bi-skew brace, then $(G, \{\cdot, \circ\})$ is a brace block.
- If $\psi \in Ab(G)$ then $(G, \{\circ_n : n \ge 0\})$ is a brace block.

The work on abelian maps and brace blocks is generalized in [Caranti-Stefanello 2021, v. 1].

The condition $\psi \in Ab(G)$ can be relaxed: one can, for example, take $\psi \in End(G)$ such that $\psi([G, G]) \leq Z(G)$.

We call such maps *commutator-central* and denote the set of all commutator central maps by CC(G).

Additionally, [C-S 21 v. 1] replaces $\psi_n = -(1 - \psi)^n + 1$ with $\psi_n \in \psi\mathbb{Z}[\psi] \subset Map(G)$ and creates a brace block with binary operations given recursively by

$$g \circ_n h = g \circ_{n-1} \psi_n(g) \circ_{n-1} h \circ_{n-1} \widetilde{\psi_n(g)},$$

where $g \circ_{n-1} \widetilde{g} = 1_G$.

Bardakov, Neshchadim, and Yadav talk about *brace systems*: a set *G* and a graph (V, E) where the vertices are binary operations and directed edges $\cdot \rightarrow \circ$ give braces (G, \cdot, \circ) .

A double-arrow corresponds to a "symmetric brace", i.e., bi-skew brace.

They use " λ -homomorphisms" to construct brace blocks, which encompasses [K, 2022] and [C-S 21 v. 1].

These are also constructed recursively: $a \circ_{i+1} b = a \circ_i \lambda_a(b)$ where $\lambda_a : G \to Aut(G)$ satisfies certain properties.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation for current work

$$g \circ_n h = g \circ_{n-1} \psi_n(g) \circ_{n-1} h \circ_{n-1} \psi_n(g)$$

$$a \circ_{i+1} b = a \circ_i \lambda_a(b)$$

Thoughts on seeing this construction

- Given the lack of "natural ordering" in the ψ_n's, the recursive nature to these definitions seems "artificial".
- It would be nice to write the binary operations non-recursively.
- A priori, there seems to be no reason why a brace block needs to be constructed as a sequence.
- The jump from my prescribed family of maps ψ_n = -(1 ψ)ⁿ + 1 to the family in [C-S, 2021, v.1] or [B-N-Y 2022] is a significant one. Can we generalize even more?

Background

2 Commutator-Central Maps: A New Construction

- 3 Hopf-Galois Structures
- 4 Special Case: Nilpotency Class Two

5 Next

Throughout, fix $\psi \in CC(G)$.

Note that $\psi \in CC(G)$ means that $\psi(gh) = \psi(hg)z$ for some $z \in Z$.

Let \mathscr{E} be the elements of $M_{ap}(G)$ which decompose as a sum of endomorphisms.

So $\mathscr{E} = \{ \alpha : \alpha = \phi_1 + \phi_2 + \dots + \phi_n, \phi_i \in \operatorname{End}(G) \} \subset \operatorname{Map}(G).$

Note $\operatorname{End}(G) \subsetneq \mathscr{E} \subsetneq \operatorname{Map}(G)$ since $-1 : g \mapsto g^{-1} \notin \operatorname{End}(G)$ and, e.g., $\alpha(1_G) = 1_G$ for all $\alpha \in \mathscr{E}$.

Let $\psi_{\alpha} = \psi \alpha$, and define

$$g \circ_{\alpha} h = g \psi_{\alpha}(g) h \psi_{\alpha}(g)^{-1}.$$

$g\circ_lpha h=g\psi_lpha(g)h\psi_lpha(g)^{-1}$

Special cases:

$$\begin{aligned} \alpha &= 0: \quad g \circ_{\alpha} h = gh \\ \alpha &= -1: \quad g \circ_{\alpha} h = g\psi(g)^{-1}h\psi(g) = g \circ h \quad [\mathsf{K}, 2021] \\ \alpha &= 1: \quad g \circ_{\alpha} h = g\psi(g)h\psi(g)^{-1} \quad [\mathsf{C-S}\ 21\ v.\ 1] \\ \alpha &= \sum_{i=0}^{n-1} (-1)^{i} {n \choose i} \psi^{i}: \quad g \circ_{\alpha} h = g \circ_{n} h \quad [\mathsf{K}, 2022] \end{aligned}$$

We also get the C-S 21 v. 1 blocks obtained from elements of $\psi \mathbb{Z}[\psi]$.

Theorem (K, c. 2023)

Let $\psi \in CC(G)$, $\alpha, \beta \in \mathscr{E}$. Then $(G, \circ_{\alpha}, \circ_{\beta})$ is a brace. In other words,

 $(\boldsymbol{G}, \{\circ_{\alpha}: \alpha \in \mathscr{E}\})$

is a brace block.

イロト イ理ト イヨト イヨト

More observations:

- $g \circ_{\alpha} h = g \circ_{\beta} h$ for all $g, h \in G$ if and only if $\psi(\alpha \beta)(G) \leq Z$.
- If α and β consist of the same endomorphisms, used the same number of times, then g ∘_α h = g ∘_β h for all g, h ∈ G.
 For example,

$$egin{aligned} \psi((\phi_1+\phi_2)-(\phi_2+\phi_1))(g) &= \psi\left(\phi_1(g)\phi_2(g)(\phi_2(g)\phi_1(g))^{-1}
ight) \ &= \psi\left(\phi_1(g)\phi_2(g)\phi_1(g)^{-1}\phi_2(g)^{-1}
ight)\in Z \end{aligned}$$

So the ordering of the endomorphisms in an element of \mathscr{E} doesn't matter: we can think of \mathscr{E} as the free abelian group generated by End(G).

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Each brace $(G, \circ_{\alpha}, \circ_{\beta})$ in a brace block gives (potentially) two solutions to the YBE:

$$\begin{split} R(g,h) &= (\widetilde{g} \circ_{\alpha} (g \circ_{\beta} h), \overline{\widetilde{g}} \circ_{\alpha} (g \circ_{\beta} h) \circ_{\beta} g \circ_{\beta} h) \\ R^{-1}(g,h) &= ((g \circ_{\beta} h) \circ_{\alpha} \widetilde{g}, \overline{(g \circ_{\beta} h) \circ_{\alpha} \widetilde{g}} \circ_{\beta} g \circ_{\beta} h) \end{split}$$

where $g \circ_{\alpha} \widetilde{g} = g \circ_{\beta} \overline{g} = 1_{G}$.

These can be written out in terms of $\psi_{\alpha}, \psi_{\beta}$.

Background

2 Commutator-Central Maps: A New Construction

Hopf-Galois Structures

4 Special Case: Nilpotency Class Two

5 Next

$g\circ_eta h=g\psi_eta(g)h\psi_eta(g)^{-1}$

Using $\psi \in CC(G)$, $\beta \in \mathscr{E}$ we get a regular, *G*-stable subgroup $N \leq Perm(G)$ in a way analogous to what we had previously: $N = \{\eta_g^{(\beta)} : g \in G\}$ with

$$\eta_g^{(\beta)}[h] = g \circ_{\beta} h = g \psi_{\beta}(g) h \psi_{\beta}(g)^{-1}.$$

That is,

$$egin{aligned} \eta_{m{g}}^{(eta)} &= \lambda(m{g}\psi_eta(m{g}))
ho(\psi_eta(m{g})) \ &= \lambda(m{g})m{\mathcal{C}}(\psi_eta(m{g})), \end{aligned}$$

with $C: G \to Inn(G)$ being the conjugation map.

Hopf-Galois structure: $\eta_g^{(\beta)}[h] = g\psi_{\beta}(g)h\psi_{\beta}(g)^{-1}$

Let L/K be a Galois extension with Gal(L/K) = G.

Let $N = N_{\beta}$ be as above (depending on ψ, β).

Then G acts on L[N] by

$${}^{k}(\ell\eta_{g}^{(\beta)})=k(\ell)\eta_{kg\psi_{\beta}(g)k^{-1}\psi_{\beta}(g)^{-1}}^{(\beta)},\ g,k\in G,\ \ell\in L.$$

Let $H = L[N]^G$. Then L/K is an *H*-Galois extension.

So L/K has Hopf-Galois structures of type isomorphic to (G, \circ_{β}) for all $\beta \in \mathscr{E}$.

Fact. Gp-Like(\mathcal{H}) = { $\eta_g^{(\beta)} \in \mathcal{N} : g\psi_\beta(g) \in Z$ } = { $\rho(g^{-1}) : g\psi_\beta(g) \in Z$ }.

イロン イボン イヨン 一日

Since $(G, \circ_{\alpha}, \circ_{\beta})$ is a brace, we have more Hopf-Galois structures, though not necessarily on the same extension L/K.

We have $N_{\beta} = \{\eta_{g}^{(\beta)} : g \in G\} \leq \text{Perm}(G) = \text{Perm}(G, \circ_{\alpha})$ is regular.

It is also
$$(G, \circ_{\alpha})$$
-stable: ${}^{k}\eta_{g}^{(\beta)} = \eta_{k\circ_{\alpha}(g\circ_{\beta}\widetilde{k})}^{(\beta)} = \eta_{(k\circ_{\alpha}h)\circ_{\beta}\overline{k}}^{(\beta)}, \ k\circ_{\alpha}\widetilde{k} = 1_{G}.$

For fixed $\beta \in \mathscr{E}$, $N_{\beta} \leq \text{Perm}(G, \circ_{\alpha})$ is regular, (G, \circ_{α}) -stable and hence yields a Hopf-Galois structure on each (G, \circ_{α}) -Galois extension, $\alpha \in \mathscr{E}$.

Background

- 2 Commutator-Central Maps: A New Construction
- 3 Hopf-Galois Structures
- 4 Special Case: Nilpotency Class Two

5 Next

イロト イポト イヨト イヨ

We say *G* (still nonabelian) has *nilpotency class two* if $[G, G] \le Z$. Examples:

- D_4 , dihedral group, order 8: $[G, G] = Z = \langle r^2 \rangle$;
- Q_8 , quaternion group: [G, G] = Z is the subgroup of order 2;
- H(p), the Heisenberg group mod p: [G, G] = Z cyclic, order p;
- extraspecial groups: *p*-groups with $Z \cong C_p$ and $G/Z \cong C_p^{n-1}$ $(|G| = p^n)$.

Nilpotency class two

We have $\psi = 1 \in CC(G)$, and there is no reason to consider any other choice of ψ .

The brace block with $\psi = 1$ will contain every brace block on *G* starting with some choice of $\psi \in CC(G)$.

イロト イヨト イヨト イヨト

On opposites

Recall: for (B, \cdot, \circ) a brace we have (B, \cdot', \circ) is also a brace, where $a \cdot' b = b \cdot a$ for all $a, b \in B$. We call (B, \cdot', \circ) the *opposite* brace to (B, \cdot, \circ) .

Example

The almost trivial brace is the opposite brace to the trivial brace (and vice versa).

If we choose $\psi = 1$ then we can pick $\alpha = -1$ and obtain

$$g \circ_{\alpha} h = g \alpha(g) h \alpha(g)^{-1} = g g^{-1} h g = h g = g \cdot' h.$$

As choosing $\alpha = \mathbf{0} \in \mathscr{E}$ always gives the trivial brace, we obtain:

If G has nilpotency class two, then any maximal brace block contains both the trivial brace and the almost trivial brace on G.

< ロ > < 同 > < 回 > < 回 >

An equivalent opposite

What about opposites for $(G, \cdot, \circ_{\alpha})$?

A general observation

Given (B, \cdot, \circ) define a binary operation $\hat{\circ}$ by

$$a \circ b = (a^{-1} \circ b^{-1})^{-1}, \ a, b \in B.$$

Then $(B, \cdot, \hat{\circ})$ is a brace, and $(B, \cdot, \hat{\circ}) \cong (B, \cdot', \circ)$ via $a \mapsto a^{-1}$.

If G is any finite nonabelian group, $\psi \in CC(G), \ \alpha \in \mathscr{E}$ we have

$$egin{aligned} g \, \hat{\circ} \, h &= (g^{-1} \circ_lpha h^{-1})^{-1} \ &= (g^{-1} \psi_lpha (g^{-1}) h^{-1} \psi_lpha (g^{-1})^{-1})^{-1} \ &= \psi_lpha (g^{-1}) h \psi_lpha (g^{-1})^{-1} g \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >

$g \circ h = \psi_{lpha}(g^{-1})h\psi_{lpha}(g^{-1})^{-1}g$

Assume *G* has nilpotency class two, and let $\psi = 1 \in CC(G)$. So

$$\boldsymbol{g} \hat{\circ}_{\alpha} \boldsymbol{h} = \alpha(\boldsymbol{g}^{-1}) \boldsymbol{h} \alpha(\boldsymbol{g}^{-1})^{-1} \boldsymbol{g}.$$

For $\alpha = \phi_1 + \dots + \phi_t \in \mathscr{E}$, let $\alpha^* = \phi_t + \dots + \phi_1 \in \mathscr{E}$. Let $\beta = -1 + \alpha(-1) = -1 - \alpha^* \in \mathscr{E}$. Then $\beta(g) = g^{-1}\alpha(g^{-1})$ and

$$g \circ_{\beta} h = g\beta(g)h\beta(g)^{-1}$$

= $g(g^{-1}\alpha(g^{-1}))h(g^{-1}\alpha(g^{-1}))^{-1}$
= $\alpha(g^{-1})h\alpha(g^{-1})^{-1}g$
= $g \circ_{\alpha} h$

If $\psi = 1$ then $(G, \cdot, \circ_{\alpha})$ is in a brace block if and only if $(G, \cdot, \circ_{\alpha})$ is.

This does not happen for general ψ (hence, for general *G*).

Let L/K be a Galois extension, Galois group $G = Q_8$.

Write
$$Q_8 = \langle a, b : a^4 = b^4 = a^2 b^2 = a b a b^{-1} = 1_G \rangle$$
.

We will cast the results to follow in terms of regular subgroups rather than braces.

Regular subgroups of $Perm(Q_8)$ are classified in [Taylor-Truman, 2019]. There are 22 subgroups:

Type $C_2 \times C_2 \times C_2$: 2 structures Type $C_4 \times C_2$: 6 structures Type C_8 : 6 structures Type Q_8 : 2 structures Type D_4 : 6 structures

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Some endomorphisms

Let $s, t \in \{a, b, ab\}, s \neq t$. Consider the following elements of End(*G*):

For $\alpha \in \mathscr{E}$ given by:

1
$$\alpha = \phi_0 = 0 \Rightarrow N = \lambda(G) \cong G.$$
 1 $\Rightarrow N = \rho(G) \cong G.$
 a $= 1 \Rightarrow N = \rho(G) \cong G.$
 a $= \phi_1 \Rightarrow N = \langle \lambda(s)\rho(t), \lambda(s^2), \lambda(t)\rho(st) \rangle \cong C_2 \times C_2 \times C_2.$
 a $= \phi_2 + \phi_3 \Rightarrow N = \langle \lambda(s), \rho(t) \rangle \cong C_4 \times C_2.$
 a $= \phi_4 \Rightarrow N = \langle \rho(s), \lambda(s)\rho(t) \rangle \cong D_4.$
 a $= -1 - \phi_4 \Rightarrow N = \langle \lambda(s), \lambda(t)\rho(s) \rangle \cong D_4.$

It turns out that by varying *s*, *t* we get all regular, *G*-stable subgroups of $Perm(Q_8)$ except those of cyclic type.

This gives rise to a brace block with 16 different operations.

A brace block of size 16

$$a = \mathbf{0} \Rightarrow \mathbf{N} = \lambda(\mathbf{G}) \cong \mathbf{G}.$$

2
$$\alpha = 1 \Rightarrow N = \rho(G) \cong G.$$

3 $\alpha = \phi_1 \Rightarrow N = \langle \lambda(s)\rho(t), \lambda(s^2), \lambda(t)\rho(st) \rangle \cong C_2 \times C_2 \times C_2$
4 $\alpha = \phi_1 + \phi_2 \Rightarrow N = \langle \lambda(s), \rho(t) \rangle \cong C_1 \times C_2$

$$a = \phi_4 \Rightarrow N = \langle \rho(s), \lambda(s)\rho(t) \rangle \cong D_4.$$

$$\circ \alpha = -1 - \phi_4 \Rightarrow \mathbf{N} = \langle \lambda(\mathbf{s}), \lambda(t) \rho(\mathbf{s}) \rangle \cong \mathbf{D}_4.$$

Remarks.

- This block is maximal: we cannot pick α to get $N \cong C_8$ since $|\lambda(g\psi_{\alpha}(g))\rho(\psi_{\alpha}(g))| \leq \operatorname{lcm}(|g\psi_{\alpha}(g)|, |\psi_{\alpha}(g)|).$
- Neither (4) nor (6) above can be obtained with some $\alpha \in \text{End}(Q_8)$.

Background

- 2 Commutator-Central Maps: A New Construction
- Bopf-Galois Structures
- 4 Special Case: Nilpotency Class Two

The opposite

Recall: if *G* has nilpotency class two, then $\hat{\circ}_{\alpha}$ is in the brace block $(G, \{\circ_{\alpha} : \alpha \in \mathscr{E}\})$ (setting $\psi = 1$).

For general *G*, there are other cases where this may occur, a simple example being $(G, \{\cdot, \cdot'\})$.

If the nilpotency class is greater than 2, is there a condition to determine when $\hat{\circ}_{\alpha}$ will be in a brace block containing $(G, \cdot, \circ_{\alpha})$?

Such a condition would presumably depend not just on *G* but on the particular choice of ψ .

Under what conditions will a brace block contain both $(G, \circ_{\alpha}, \circ_{\beta})$ and $(G, \circ'_{\alpha}, \circ_{\beta})$ (or $(G, \circ_{\alpha}, \widehat{\circ}_{\beta})$)?

< ロ > < 同 > < 回 > < 回 >

No.

Example

Let
$$G = S_n$$
, $n \ge 5$. We have $[S_n, S_n] = A_n$, $Z = \{\iota\}$.
If $\psi \in CC(G)$ then $A_n \subseteq \ker \psi$.
So

$$\psi(\sigma) = \begin{cases} \iota & \sigma \in \mathbf{A}_n \\ \tau & \sigma \notin \mathbf{A}_n \end{cases}, \ \tau \in \mathbf{S}_n, \ \tau^2 = \iota.$$

Let $\psi, \psi' \in CC(G)$ be such that $\psi(G) = \langle (12) \rangle, \ \psi'(G) = \langle (34) \rangle$. Since $\psi_{\alpha}(G) \subseteq \psi(G) = \langle (12) \rangle$ we see that $\psi' \neq \psi_{\alpha}$ for any $\alpha \in \mathscr{E}$. So the circle operations given by ψ, ψ' do not appear in the same brace block.

イロト イポト イヨト イヨ

$$\psi(G) = \langle (12) \rangle := \langle \tau \rangle, \ \psi'(G) = \langle (34) \rangle := \langle \tau' \rangle$$

Denote the corresponding binary operations by \circ and \star respectively.

Clearly, (G, \cdot, \circ) and (G, \cdot, \star) are biskew braces (since $\psi, \psi' \in Ab(G)$).

However, we can show that (G, \circ, \star) is a biskew brace as well: it follows from the fact that $\tau \tau' = \tau' \tau$.

Thus, $(G, \{\cdot, \circ, \star\})$ is a brace block.

This quickly generalizes to brace blocks with up to $2^{\lfloor n/2 \rfloor}$ groups, each isomorphic to S_n or $A_n \times C_2$.

Can this be extended in a reasonable way to find all brace blocks?

If so, it would also find all bi-skew braces.

Opportunity: HGS of abelian type

In the classic, recursive constructions, only one abelian group arises in a brace block: if (G, \circ_n) is abelian, then $(G, \circ_{n+1}) = (G, \circ_n)$.

Thus we could not obtain any nontrivial braces (B, \cdot, \circ) with both (B, \cdot) and (B, \circ) abelian.

Equivalently, we could not use the theory to find Hopf-Galois structures on an abelian extension of abelian type.

It is possible now.

Example

Return to $G = Q_8 = \langle a, b \rangle$. Let $\phi_1(a) = a^3 b$, $\phi_1(b) = a^3$, $\phi_2(a) = a^2 b$, $\phi_2(b) = a^3$, $\phi_3(a) = b$, $\phi_3(b) = ab$. Let $\alpha = \phi_1$ and $\beta = \phi_2 + \phi_3$. Then $(G, \circ_{\alpha}) \cong C_2 \times C_2 \times C_2$ and $(G, \circ_{\beta}) \cong C_4 \times C_2$. This gives a HGS on a $C_2 \times C_2 \times C_2$ extension of type $C_4 \times C_2$ and vice versa.

イロト イ団ト イヨト イヨト

& is very large.

Example

There are 30 HGS on an S_5 -extension [Carnahan-Childs, 99], hence at most 30 bi-skew braces (G, \cdot, \circ) with $(G, \cdot) = S_5$. Let $\psi = 1$. End (S_5) has 146 elements, including 120 automorphisms. So \mathscr{E} contains, among other things, all sums of elements of End (S_5) . So \mathscr{E} has many more than $2^{146} \approx 10^{44}$ elements.

In general, many $\alpha \in \mathscr{E}$ give identical braces. It would be good to have an effective way to pick "different" α 's. Say \mathscr{E}/\sim , where $\alpha \sim \beta \Rightarrow \psi(\alpha - \beta) \subset Z$.

< ロ > < 同 > < 回 > < 回 >

Thank you.

æ

イロト イヨト イヨト イヨト