Commutator-central maps, brace blocks, and Hopf-Galois extensions

Alan Koch
Agnes Scott College

May 31, 2022

Outline

(9) Background
(2) Commutator-Central Maps: A New Construction
(3) Hopf-Galois Structures

4 Special Case: Nilpotency Class Two
(5) Next

Setup

Let $G=(G, \cdot)$ be a finite, nonabelian group, center Z and commutator subgroup $[G, G]$.
Denote by $\operatorname{Ab}(\mathcal{G})$ the set of endomorphisms $\psi: G \rightarrow \boldsymbol{G}$ with $\psi(G)$ abelian.
Recall [K., 2021] any $\psi \in \mathrm{Ab}(G)$ gives a regular, G-stable subgroup $N:=\left\{\eta_{g}: g \in G\right\}$ of $\operatorname{Perm}(G)$, where

$$
\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g) .
$$

Regular, G-stable subgroups $N \leq \operatorname{Perm}(G)$ give

- skew left braces;
- solutions to the Yang-Baxter equation; and
- Hopf-Galois structures on a G-extension of fields, and the type of the structure is the abstract group isomorphic to N.

Regular, G-stable subgroups give braces

A skew left brace (hereafter, brace) is a triple (B, \cdot, \circ) where (B, \cdot) and (B, \circ) are groups and

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c)
$$

holds for all $a, b, c \in B$, where $a \cdot a^{-1}=1_{B}$. Childs denotes this (B, \circ, \cdot). The two simplest examples:

Example

For (G, \cdot) any group, the triple (G, \cdot, \cdot) is a brace. We call this the trivial brace on G.

Example

For (G, \cdot) any nonabelian group, and define $g \cdot^{\prime} h=h g$ for all $g, h \in G$. Then the triple ($G, \cdot,^{\prime}$) forms the almost trivial brace on G.

Regular, G-stable subgroups give braces

A skew left brace (hereafter, brace) is a triple (B, \cdot, \circ) where (B, \cdot) and (B, \circ) are groups and

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c)
$$

holds for all $a, b, c \in B$, where $a \cdot a^{-1}=1_{B}$. Childs denotes this (B, \circ, \cdot).

Properties and Conventions

- (B, \cdot) and (B, \circ) have the same identity 1_{B}.
- We write the inverse to $a \in(B, \circ)$ by \bar{a}.
- We will frequently write $a \cdot b$ as $a b$.

Example (K, 2021)

Let $\psi \in \operatorname{Ab}(G)$, and define

$$
g \circ h=\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)
$$

Then (G, \cdot, \circ) is a brace.

A conceptual break from earlier works

There is a well-known connection between regular, G-stable subgroups N of $\operatorname{Perm}(G)$ and braces. If $\varkappa: N \rightarrow G$ is given by $\varkappa(\eta)=\eta\left[1_{G}\right]$ then one defines an operation \circ on N via:

$$
\eta \circ \pi=\varkappa^{-1}\left(\varkappa(\eta) *_{G} \varkappa(\pi)\right) .
$$

One then has a brace (N, \cdot, \circ) with $(N, \cdot) \leq \operatorname{Perm}(G, \circ)$.
That's not what's happening in our construction.

$$
g \circ h=\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)
$$

Our brace is (G, \cdot, \circ) with $(G, o) \leq \operatorname{Perm}(G, \cdot)$.
This works because both (G, \cdot, \circ) and (G, \circ, \cdot) are braces (i.e., (G, \cdot, \circ) is a bi-skew brace).

Braces give solutions to the Yang-Baxter equation

A set-theoretic solution to the Yang-Baxter equation (hereafter, solution to the YBE) is a set B and a map $R: B \times B \rightarrow B \times B$ such that
$\left(R \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times R\right)\left(R \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times R\right)\left(R \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times R\right): B^{3} \rightarrow B^{3}$.

A solution $R(x, y)=\left(\sigma_{x}(y), \tau_{y}(x)\right)$ is non-degenerate if σ_{x} and τ_{y} are bijections, involutive if $R^{2}=\mathrm{id}_{B \times B}$.

Generally, a brace (B, \cdot, \circ) gives non-degenerate solutions:

$$
\begin{aligned}
R(a, b) & =\left(a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b\right) \\
R^{-1}(a, b) & =\left((a \circ b) a^{-1}, \overline{(a \circ b) a^{-1}} \circ a \circ b\right)
\end{aligned}
$$

Note that R is involutive if and only if (B, \cdot) is abelian.

Abelian maps and solutions

$$
\begin{aligned}
R(a, b) & =\left(a^{-1}(a \circ b), \overline{a^{-1}(a \circ b)} \circ a \circ b\right) \\
R^{-1}(a, b) & =\left((a \circ b) a^{-1}, \overline{(a \circ b) a^{-1}} \circ a \circ b\right) .
\end{aligned}
$$

Example (K., 2021)

For $\psi \in \operatorname{Ab}(G)$ we get the following solutions with underlying set G :

$$
\begin{aligned}
R(g, h) & =\left(\psi\left(g^{-1}\right) h \psi(g), \psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)\right) \\
R^{-1}(g, h) & =\left(g \psi\left(g^{-1}\right) h \psi(g) g^{-1}, \psi(h) g \psi\left(h^{-1}\right)\right)
\end{aligned}
$$

Note. There are two more solutions because ($G, \cdot, \cdot \circ$) is a bi-skew brace, but we will not directly address the other two here.

More maps

Denote by $\operatorname{Map}(G)$ the set of all functions on G.
With the binary operations

$$
(\alpha+\beta)(g)=\alpha(g) \beta(g), \alpha \beta(g)=\alpha(\beta(g)), g \in \boldsymbol{G}
$$

we have a right near-ring structure on $\operatorname{Map}(G)$, i.e.,

- $(\operatorname{Map}(G),+)$ is a (nonabelian) group;
- "multiplication" is associative; and
- $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$ for all $\alpha, \beta, \gamma \in \operatorname{Map}(G)$.

For $n \in \mathbb{Z}$ we write $n \in \operatorname{Map}(G)$ to represent $g \mapsto g^{n}$.
So $0,1 \in \operatorname{Map}(G)$ are the trivial and identity map respectively.
Note that both $\operatorname{Ab}(G)$ and $\operatorname{End}(G)$ are contained in $\operatorname{Map}(G)$ but are not subgroups.

Last year's Omaha construction

Let $\psi \in \operatorname{Ab}(G)$.
Define $\left\{\psi_{n}: n \geq 0\right\}$ by $\psi_{n}=-(1-\psi)^{n}+1$.
For example, $\psi_{0}=0, \psi_{1}=\psi, \psi_{2}=2 \psi-\psi^{2}$.
Then $\psi_{n} \in \operatorname{Ab}(G)$ for n.

Theorem (K., 2022)

Let $n \geq 0$ and $g \circ_{n} h=g \psi_{n}\left(g^{-1}\right) h \psi_{n}(g)$. Then $\left(G, \cdot, \circ_{n}\right)$ is a brace. Furthermore, for all $m \geq 0,\left(G, \circ_{m}, \circ_{n}\right)$ is a brace.

We say G, together with $\left\{o_{n}: n \geq 0\right\}$, form a brace block.

Brace blocks

A brace block is a set B and a family $\left\{o_{n}: n \in \mathcal{I}\right\}, \mathcal{I}$ an index set such that $\left(B, \circ_{m}, \circ_{n}\right)$ is a brace for all $m, n \in \mathcal{I}$.

We will denote this brace block by ($\left.B,\left\{o_{n}: n \in \mathcal{I}\right\}\right)$
Such braces are necessarily bi-skew.
Short examples:

- $(G,\{\cdot\})$ is the trivial brace block.
- If (G, \cdot, \circ) is a bi-skew brace, then $(G,\{\cdot, \circ\})$ is a brace block.
- If $\psi \in \mathrm{Ab}(G)$ then $\left(G,\left\{o_{n}: n \geq 0\right\}\right)$ is a brace block.

Generalizations: C-S 2021 v. 1

The work on abelian maps and brace blocks is generalized in [Caranti-Stefanello 2021, v. 1].

The condition $\psi \in \operatorname{Ab}(G)$ can be relaxed: one can, for example, take $\psi \in \operatorname{End}(G)$ such that $\psi([G, G]) \leq Z(G)$.

We call such maps commutator-central and denote the set of all commutator central maps by $C C(G)$.

Additionally, [C-S 21 v. 1] replaces $\psi_{n}=-(1-\psi)^{n}+1$ with $\psi_{n} \in \psi \mathbb{Z}[\psi] \subset \operatorname{Map}(G)$ and creates a brace block with binary operations given recursively by

$$
g \circ_{n} h=g \circ_{n-1} \psi_{n}(g) \circ_{n-1} h \circ_{n-1} \widetilde{\psi_{n}(g)}
$$

where $g \circ_{n-1} \widetilde{g}=1_{G}$.

Generalizations: B-N-Y 2022

Bardakov, Neshchadim, and Yadav talk about brace systems: a set G and a graph (V, E) where the vertices are binary operations and directed edges $\cdot \rightarrow \circ$ give braces (G, \cdot, \circ).

A double-arrow corresponds to a "symmetric brace", i.e., bi-skew brace.

They use " λ-homomorphisms" to construct brace blocks, which encompasses [K, 2022] and [C-S 21 v. 1].

These are also constructed recursively: $a \circ_{i+1} b=a \circ_{i} \lambda_{a}(b)$ where $\lambda_{a}: G \rightarrow \operatorname{Aut}(G)$ satisfies certain properties.

Motivation for current work

$$
\begin{gathered}
g \circ_{n} h=g \circ_{n-1} \psi_{n}(g) \circ_{n-1} h \circ_{n-1} \widetilde{\psi_{n}(g)} \\
a \circ_{i+1} b=a \circ_{i} \lambda_{a}(b)
\end{gathered}
$$

Thoughts on seeing this construction

- Given the lack of "natural ordering" in the ψ_{n} 's, the recursive nature to these definitions seems "artificial".
- It would be nice to write the binary operations non-recursively.
- A priori, there seems to be no reason why a brace block needs to be constructed as a sequence.
- The jump from my prescribed family of maps $\psi_{n}=-(1-\psi)^{n}+1$ to the family in [C-S, 2021, v.1] or [B-N-Y 2022] is a significant one. Can we generalize even more?

Outline

(1) Background
(2) Commutator-Central Maps: A New Construction
(3) Hopf-Galois Structures

4 Special Case: Nilpotency Class Two
(5) Next

The main construction

Throughout, fix $\psi \in \operatorname{CC}(G)$.
Note that $\psi \in \mathrm{CC}(G)$ means that $\psi(g h)=\psi(h g) z$ for some $z \in Z$.
Let \mathscr{E} be the elements of $\operatorname{Map}(G)$ which decompose as a sum of endomorphisms.
So $\mathscr{E}=\left\{\alpha: \alpha=\phi_{1}+\phi_{2}+\cdots+\phi_{n}, \phi_{i} \in \operatorname{End}(G)\right\} \subset \operatorname{Map}(G)$.
Note $\operatorname{End}(G) \varsubsetneqq \mathscr{E} \varsubsetneqq \operatorname{Map}(G)$ since $-1: g \mapsto g^{-1} \notin \operatorname{End}(G)$ and, e.g., $\alpha\left(1_{G}\right)=1_{G}$ for all $\alpha \in \mathscr{E}$.

Let $\psi_{\alpha}=\psi \alpha$, and define

$$
g \circ_{\alpha} h=g \psi_{\alpha}(g) h \psi_{\alpha}(g)^{-1}
$$

$g \circ_{\alpha} h=g \psi_{\alpha}(g) h \psi_{\alpha}(g)^{-1}$

Special cases:

$$
\begin{array}{rlr}
\alpha=0: & g \circ_{\alpha} h=g h & \\
\alpha=-1: & g \circ_{\alpha} h=g \psi(g)^{-1} h \psi(g)=g \circ h & {[\mathrm{~K}, 2021]} \\
\alpha=1: & g \circ_{\alpha} h=g \psi(g) h \psi(g)^{-1} & {[\mathrm{C}-\mathrm{S} 21 \mathrm{v.1]}} \\
\alpha=\sum_{i=0}^{n-1}(-1)^{i}\binom{n}{i} \psi^{i}: & g \circ_{\alpha} h=g \circ_{n} h & {[\mathrm{~K}, 2022]}
\end{array}
$$

We also get the C-S 21 v. 1 blocks obtained from elements of $\psi \mathbb{Z}[\psi]$.

Theorem (K, c. 2023)

Let $\psi \in \mathrm{CC}(G), \alpha, \beta \in \mathscr{E}$. Then $\left(G, \circ_{\alpha}, \circ_{\beta}\right)$ is a brace. In other words,

$$
\left(G,\left\{\circ_{\alpha}: \alpha \in \mathscr{E}\right\}\right)
$$

is a brace block.

$g \circ_{\alpha} h=g \psi_{\alpha}(g) h \psi_{\alpha}(g)^{-1}$

More observations:

- $g \circ_{\alpha} h=g \circ_{\beta} h$ for all $g, h \in G$ if and only if $\psi(\alpha-\beta)(G) \leq Z$.
- If α and β consist of the same endomorphisms, used the same number of times, then $g \circ_{\alpha} h=g \circ_{\beta} h$ for all $g, h \in G$. For example,

$$
\begin{aligned}
\psi\left(\left(\phi_{1}+\phi_{2}\right)-\left(\phi_{2}+\phi_{1}\right)\right)(g) & =\psi\left(\phi_{1}(g) \phi_{2}(g)\left(\phi_{2}(g) \phi_{1}(g)\right)^{-1}\right) \\
& =\psi\left(\phi_{1}(g) \phi_{2}(g) \phi_{1}(g)^{-1} \phi_{2}(g)^{-1}\right) \in Z
\end{aligned}
$$

So the ordering of the endomorphisms in an element of \mathscr{E} doesn't matter: we can think of \mathscr{E} as the free abelian group generated by End(G).

Back to the YBE

Each brace ($G, \circ_{\alpha}, \circ_{\beta}$) in a brace block gives (potentially) two solutions to the YBE:

$$
\begin{aligned}
R(g, h) & =\left(\widetilde{g} \circ_{\alpha}\left(g \circ_{\beta} h\right), \overline{\widetilde{g} \circ_{\alpha}\left(g \circ_{\beta} h\right)} \circ_{\beta} g \circ_{\beta} h\right) \\
R^{-1}(g, h) & =\left(\left(g \circ_{\beta} h\right) \circ_{\alpha} \widetilde{g}, \overline{\left.\left(g \circ_{\beta} h\right) \circ_{\alpha} \widetilde{g} \circ_{\beta} g \circ_{\beta} h\right)}\right.
\end{aligned}
$$

where $g \circ_{\alpha} \widetilde{g}=g \circ_{\beta} \bar{g}=1_{G}$.

These can be written out in terms of $\psi_{\alpha}, \psi_{\beta}$.

Outline

(1) Background

(2) Commutator-Central Maps: A New Construction

(3) Hopf-Galois Structures

4 Special Case: Nilpotency Class Two
(5) Next

$g \circ_{\beta} h=g \psi_{\beta}(g) h \psi_{\beta}(g)^{-1}$

Using $\psi \in \mathrm{CC}(G), \beta \in \mathscr{E}$ we get a regular, \mathbf{G}-stable subgroup $N \leq \operatorname{Perm}(G)$ in a way analogous to what we had previously:
$N=\left\{\eta_{g}^{(\beta)}: g \in G\right\}$ with

$$
\eta_{g}^{(\beta)}[h]=g \circ_{\beta} h=g \psi_{\beta}(g) h \psi_{\beta}(g)^{-1}
$$

That is,

$$
\begin{aligned}
\eta_{g}^{(\beta)} & =\lambda\left(g \psi_{\beta}(g)\right) \rho\left(\psi_{\beta}(g)\right) \\
& =\lambda(g) C\left(\psi_{\beta}(g)\right)
\end{aligned}
$$

with $C: G \rightarrow \operatorname{Inn}(G)$ being the conjugation map.

Hopf-Galois structure: $\eta_{g}^{(\beta)}[h]=g \psi_{\beta}(g) h \psi_{\beta}(g)^{-1}$

Let L / K be a Galois extension with $\operatorname{Gal}(L / K)=G$.
Let $N=N_{\beta}$ be as above (depending on ψ, β).
Then G acts on $L[N]$ by

$$
{ }^{k}\left(\ell \eta_{g}^{(\beta)}\right)=k(\ell) \eta_{k g \psi_{\beta}(g) k^{-1} \psi_{\beta}(g)^{-1}}^{(\beta)}, g, k \in G, \ell \in L .
$$

Let $H=L[N]^{G}$. Then L / K is an H-Galois extension.
So L / K has Hopf-Galois structures of type isomorphic to $\left(G, o_{\beta}\right)$ for all $\beta \in \mathscr{E}$.
Fact. Gp-Like $(H)=\left\{\eta_{g}^{(\beta)} \in N: g \psi_{\beta}(g) \in Z\right\}=\left\{\rho\left(g^{-1}\right): g \psi_{\beta}(g) \in Z\right\}$.

More HGS

Since $\left(G, \circ_{\alpha}, \circ_{\beta}\right)$ is a brace, we have more Hopf-Galois structures, though not necessarily on the same extension L / K.

We have $N_{\beta}=\left\{\eta_{g}^{(\beta)}: g \in G\right\} \leq \operatorname{Perm}(G)=\operatorname{Perm}\left(G, \circ_{\alpha}\right)$ is regular.
It is also $\left(G, \circ_{\alpha}\right)$-stable: ${ }^{k} \eta_{g}^{(\beta)}=\eta_{k \circ_{\alpha}\left(g \circ_{\beta} \tilde{k}\right)}^{(\beta)}=\eta_{\left(k \circ_{\alpha} h\right) \circ_{\beta} \bar{k}}^{(\beta)}, k \circ_{\alpha} \widetilde{k}=1_{G}$.

For fixed $\beta \in \mathscr{E}, N_{\beta} \leq \operatorname{Perm}\left(G, \circ_{\alpha}\right)$ is regular, $\left(G, \circ_{\alpha}\right)$-stable and hence yields a Hopf-Galois structure on each $\left(G, \circ_{\alpha}\right)$-Galois extension, $\alpha \in \mathscr{E}$.

Outline

(1) Background

(2) Commutator-Central Maps: A New Construction

(3) Hopf-Galois Structures

4 Special Case: Nilpotency Class Two
(5) Next

Nilpotency class two

We say G (still nonabelian) has nilpotency class two if $[G, G] \leq Z$.

Examples:

- D_{4}, dihedral group, order 8: $[G, G]=Z=\left\langle r^{2}\right\rangle$;
- Q_{8}, quaternion group: $[G, G]=Z$ is the subgroup of order 2;
- $H(p)$, the Heisenberg group $\bmod p:[G, G]=Z$ cyclic, order p;
- extraspecial groups: p-groups with $Z \cong C_{p}$ and $G / Z \cong C_{p}^{n-1}$ $\left(|G|=p^{n}\right)$.

Nilpotency class two

We have $\psi=1 \in \mathrm{CC}(G)$, and there is no reason to consider any other choice of ψ.

The brace block with $\psi=1$ will contain every brace block on G starting with some choice of $\psi \in \mathrm{CC}(G)$.

On opposites

Recall: for (B, \cdot, \circ) a brace we have (B, \cdot^{\prime}, \circ) is also a brace, where $a \cdot^{\prime} b=b \cdot a$ for all $a, b \in B$. We call $\left(B, \cdot^{\prime}, \circ\right)$ the opposite brace to (B, \cdot, \cdot,).

Example

The almost trivial brace is the opposite brace to the trivial brace (and vice versa).

If we choose $\psi=1$ then we can pick $\alpha=-1$ and obtain

$$
g \circ_{\alpha} h=g \alpha(g) h \alpha(g)^{-1}=g g^{-1} h g=h g=g \cdot^{\prime} h
$$

As choosing $\alpha=0 \in \mathscr{E}$ always gives the trivial brace, we obtain:
If G has nilpotency class two, then any maximal brace block contains both the trivial brace and the almost trivial brace on G.

An equivalent opposite

What about opposites for $\left(G, \cdot, \circ_{\alpha}\right)$?

A general observation

Given (B, \cdot, \circ) define a binary operation ô by

$$
a \hat{o} b=\left(a^{-1} \circ b^{-1}\right)^{-1}, a, b \in B
$$

Then (B, \cdot, \hat{o}) is a brace, and $(B, \cdot, \hat{\circ}) \cong\left(B, \cdot^{\prime}, \circ\right)$ via $a \mapsto a^{-1}$.
If G is any finite nonabelian group, $\psi \in \mathrm{CC}(G), \alpha \in \mathscr{E}$ we have

$$
\begin{aligned}
g \hat{o} h & =\left(g^{-1} \circ_{\alpha} h^{-1}\right)^{-1} \\
& =\left(g^{-1} \psi_{\alpha}\left(g^{-1}\right) h^{-1} \psi_{\alpha}\left(g^{-1}\right)^{-1}\right)^{-1} \\
& =\psi_{\alpha}\left(g^{-1}\right) h \psi_{\alpha}\left(g^{-1}\right)^{-1} g
\end{aligned}
$$

$g \hat{o} h=\psi_{\alpha}\left(g^{-1}\right) h \psi_{\alpha}\left(g^{-1}\right)^{-1} g$

Assume G has nilpotency class two, and let $\psi=1 \in \mathrm{CC}(G)$.
So

$$
g \hat{o}_{\alpha} h=\alpha\left(g^{-1}\right) h \alpha\left(g^{-1}\right)^{-1} g .
$$

For $\alpha=\phi_{1}+\cdots+\phi_{t} \in \mathscr{E}$, let $\alpha^{*}=\phi_{t}+\cdots+\phi_{1} \in \mathscr{E}$.
Let $\beta=-1+\alpha(-1)=-1-\alpha^{*} \in \mathscr{E}$. Then $\beta(g)=g^{-1} \alpha\left(g^{-1}\right)$ and

$$
\begin{aligned}
g \circ_{\beta} h & =g \beta(g) h \beta(g)^{-1} \\
& =g\left(g^{-1} \alpha\left(g^{-1}\right)\right) h\left(g^{-1} \alpha\left(g^{-1}\right)\right)^{-1} \\
& =\alpha\left(g^{-1}\right) h \alpha\left(g^{-1}\right)^{-1} g \\
& =g \hat{o}_{\alpha} h
\end{aligned}
$$

If $\psi=1$ then $\left(G, \cdot, o_{\alpha}\right)$ is in a brace block if and only if ($G, \cdot, \hat{o}_{\alpha}$) is.
This does not happen for general ψ (hence, for general G).

Example: Q_{8}

Let L / K be a Galois extension, Galois group $G=Q_{8}$.
Write $Q_{8}=\left\langle a, b: a^{4}=b^{4}=a^{2} b^{2}=a b a b^{-1}=1_{G}\right\rangle$.
We will cast the results to follow in terms of regular subgroups rather than braces.

Regular subgroups of Perm $\left(Q_{8}\right)$ are classified in [Taylor-Truman, 2019]. There are 22 subgroups:

$$
\begin{array}{r}
\text { Type } C_{2} \times C_{2} \times C_{2}: 2 \text { structures } \\
\text { Type } C_{4} \times C_{2}: 6 \text { structures } \\
\text { Type } C_{8}: 6 \text { structures } \\
\text { Type } Q_{8}: 2 \text { structures } \\
\text { Type } D_{4}: 6 \text { structures }
\end{array}
$$

Some endomorphisms

Let $s, t \in\{a, b, a b\}, s \neq t$. Consider the following elements of $\operatorname{End}(G)$:

	ϕ_{0}	ϕ_{1}	ϕ_{2}	ϕ_{3}	ϕ_{4}
s	1_{G}	$s^{3} t$	$s^{2} t$	t	s^{3}
t	1_{G}	s^{3}	s^{3}	$s t$	$s t$

For $\alpha \in \mathscr{E}$ given by:
(1) $\alpha=\phi_{0}=0 \Rightarrow N=\lambda(G) \cong G$.
(2) $\alpha=1 \Rightarrow N=\rho(G) \cong G$.
(3) $\alpha=\phi_{1} \Rightarrow N=\left\langle\lambda(s) \rho(t), \lambda\left(s^{2}\right), \lambda(t) \rho(s t)\right\rangle \cong C_{2} \times C_{2} \times C_{2}$.
(4) $\alpha=\phi_{2}+\phi_{3} \Rightarrow N=\langle\lambda(s), \rho(t)\rangle \cong C_{4} \times C_{2}$.
(5) $\alpha=\phi_{4} \Rightarrow N=\langle\rho(s), \lambda(s) \rho(t)\rangle \cong D_{4}$.
(6) $\alpha=-1-\phi_{4} \Rightarrow N=\langle\lambda(s), \lambda(t) \rho(s)\rangle \cong D_{4}$.

It turns out that by varying s, t we get all regular, G-stable subgroups of Perm $\left(Q_{8}\right)$ except those of cyclic type.
This gives rise to a brace block with 16 different operations.

A brace block of size 16

$$
\begin{array}{c|cccc}
& \phi_{1} & \phi_{2} & \phi_{3} & \phi_{4} \\
\hline s & s^{3} t & s^{2} t & t & s^{3} \\
t & s^{3} & s^{3} & s t & s t
\end{array} \quad N=\{\lambda(g \alpha(g)) \rho(\alpha(g)): g \in G\}
$$

(1) $\alpha=0 \Rightarrow N=\lambda(G) \cong G$.
(2) $\alpha=1 \Rightarrow N=\rho(G) \cong G$.
(3) $\alpha=\phi_{1} \Rightarrow N=\left\langle\lambda(s) \rho(t), \lambda\left(s^{2}\right), \lambda(t) \rho(s t)\right\rangle \cong C_{2} \times C_{2} \times C_{2}$.
(4) $\alpha=\phi_{2}+\phi_{3} \Rightarrow N=\langle\lambda(s), \rho(t)\rangle \cong C_{4} \times C_{2}$.
(5) $\alpha=\phi_{4} \Rightarrow N=\langle\rho(s), \lambda(s) \rho(t)\rangle \cong D_{4}$.
(6) $\alpha=-1-\phi_{4} \Rightarrow N=\langle\lambda(s), \lambda(t) \rho(s)\rangle \cong D_{4}$.

Remarks.

- This block is maximal: we cannot pick α to get $N \cong C_{8}$ since $\left|\lambda\left(g \psi_{\alpha}(g)\right) \rho\left(\psi_{\alpha}(g)\right)\right| \leq \operatorname{lcm}\left(\left|g \psi_{\alpha}(g)\right|,\left|\psi_{\alpha}(g)\right|\right)$.
- Neither (4) nor (6) above can be obtained with some $\alpha \in \operatorname{End}\left(Q_{8}\right)$.

Outline

(1) Background

(2) Commutator-Central Maps: A New Construction

(3) Hopf-Galois Structures

4 Special Case: Nilpotency Class Two

The opposite

Recall: if G has nilpotency class two, then \hat{o}_{α} is in the brace block ($G,\left\{\circ_{\alpha}: \alpha \in \mathscr{E}\right\}$) (setting $\psi=1$).

For general G, there are other cases where this may occur, a simple example being ($G,\left\{\cdot,,^{\prime}\right\}$).

If the nilpotency class is greater than 2, is there a condition to determine when \hat{o}_{α} will be in a brace block containing $\left(G, \cdot, \circ_{\alpha}\right)$?

Such a condition would presumably depend not just on G but on the particular choice of ψ.

Under what conditions will a brace block contain both ($G, \circ_{\alpha}, \circ_{\beta}$) and ($G, \circ_{\alpha}^{\prime}, \circ_{\beta}$) (or (G, $\left.\circ_{\alpha}, \widehat{o}_{\beta}\right)$)?

Do we find all brace blocks with underlying group G ?

No.

Example

Let $G=S_{n}, n \geq 5$. We have $\left[S_{n}, S_{n}\right]=A_{n}, Z=\{\iota\}$.
If $\psi \in \operatorname{CC}(G)$ then $A_{n} \subseteq$ ker ψ.
So

$$
\psi(\sigma)=\left\{\begin{array}{ll}
\iota & \sigma \in A_{n} \\
\tau & \sigma \notin A_{n}
\end{array}, \tau \in S_{n}, \tau^{2}=\iota\right.
$$

Let $\psi, \psi^{\prime} \in \operatorname{CC}(G)$ be such that $\psi(G)=\langle(12)\rangle, \psi^{\prime}(G)=\langle(34)\rangle$.
Since $\psi_{\alpha}(G) \subseteq \psi(G)=\langle(12)\rangle$ we see that $\psi^{\prime} \neq \psi_{\alpha}$ for any $\alpha \in \mathscr{E}$. So the circle operations given by ψ, ψ^{\prime} do not appear in the same brace block.

To reinterate: no

$\psi(G)=\langle(12)\rangle:=\langle\tau\rangle, \psi^{\prime}(G)=\langle(34)\rangle:=\left\langle\tau^{\prime}\right\rangle$
Denote the corresponding binary operations by \circ and \star respectively.
Clearly, (G, \cdot, \circ) and (G, \cdot, \star) are biskew braces (since $\psi, \psi^{\prime} \in \operatorname{Ab}(G)$).
However, we can show that (G, \circ, \star) is a biskew brace as well: it follows from the fact that $\tau \tau^{\prime}=\tau^{\prime} \tau$.

Thus, $(G,\{\cdot, \circ, \star\})$ is a brace block.
This quickly generalizes to brace blocks with up to $2^{\lfloor n / 2\rfloor}$ groups, each isomorphic to S_{n} or $A_{n} \times C_{2}$.

Can this be extended in a reasonable way to find all brace blocks?

If so, it would also find all bi-skew braces.

Opportunity: HGS of abelian type

In the classic, recursive constructions, only one abelian group arises in a brace block: if $\left(G, \circ_{n}\right)$ is abelian, then $\left(G, \circ_{n+1}\right)=\left(G, \circ_{n}\right)$.
Thus we could not obtain any nontrivial braces ($B, \cdot \cdot, \circ$) with both (B, \cdot) and (B, \circ) abelian.
Equivalently, we could not use the theory to find Hopf-Galois structures on an abelian extension of abelian type.
It is possible now.

Example

Return to $G=Q_{8}=\langle a, b\rangle$. Let $\phi_{1}(a)=a^{3} b, \phi_{1}(b)=a^{3}, \phi_{2}(a)=$ $a^{2} b, \phi_{2}(b)=a^{3}, \phi_{3}(a)=b, \phi_{3}(b)=a b$.
Let $\alpha=\phi_{1}$ and $\beta=\phi_{2}+\phi_{3}$.
Then $\left(G, \circ_{\alpha}\right) \cong C_{2} \times C_{2} \times C_{2}$ and $\left(G, \circ_{\beta}\right) \cong C_{4} \times C_{2}$.
This gives a HGS on a $C_{2} \times C_{2} \times C_{2}$ extension of type $C_{4} \times C_{2}$ and vice versa.

Problem: \mathscr{E} is messy

\mathscr{E} is very large.

Example

There are 30 HGS on an S_{5}-extension [Carnahan-Childs, 99], hence at most 30 bi-skew braces (G, \cdot, \circ) with $(G, \cdot)=S_{5}$.
Let $\psi=1$.
End $\left(S_{5}\right)$ has 146 elements, including 120 automorphisms.
So \mathscr{E} contains, among other things, all sums of elements of $\operatorname{End}\left(S_{5}\right)$. So \mathscr{E} has many more than $2^{146} \approx 10^{44}$ elements.

In general, many $\alpha \in \mathscr{E}$ give identical braces.
It would be good to have an effective way to pick "different" α 's.
Say \mathscr{E} / \sim, where $\alpha \sim \beta \Rightarrow \psi(\alpha-\beta) \subset Z$.

Thank you.

