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0 Background
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Let G = (G, -) be a finite, nonabelian group, center Z and commutator
subgroup [G, G].

Denote by Ab(G) the set of endomorphisms ¢ : G — G with ¥(G)
abelian.

Recall [K., 2021] any ¥ € Ab(G) gives a regular, G-stable subgroup
N := {ng : g € G} of Perm(G), where

nglhl = gv(g~ ") (g).

Regular, G-stable subgroups N < Perm(G) give
@ skew left braces;
@ solutions to the Yang-Baxter equation; and

@ Hopf-Galois structures on a G-extension of fields, and the type of
the structure is the abstract group isomorphic to N.
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Regular, G-stable subgroups give braces

A skew left brace (hereafter, brace) is a triple (B, -, o) where (B, -) and
(B, o) are groups and

ao(b-c)=(aob)-a ' (aocc)

holds for all a, b, ¢ € B, where a-a~' = 1. Childs denotes this (B, o, -)
The two simplest examples:

For (G, -) any group, the triple (G, -, -) is a brace. We call this the trivial
brace on G.

For (G, ) any nonabelian group, and define g " h= hg for all g, h € G.
Then the triple (G, -, ') forms the almost trivial brace on G.
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Regular, G-stable subgroups give braces

A skew left brace (hereafter, brace) is a triple (B, -, o) where (B, -) and
(B, o) are groups and

ao(b-c)=(acb)-a'-(acc)
holds for all a, b, ¢ € B, where a-a~' = 1. Childs denotes this (B, o, -)
Properties and Conventions

@ (B,-) and (B, o) have the same identity 1.
@ We write the inverse to a € (B, o) by a.
@ We will frequently write a- b as ab.

Example (K, 2021)
Let ¢ € Ab(G), and define

goh=nglh] = gi(g~")h(9).
Then (G, -, 0) is a brace.
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A conceptual break from earlier works

There is a well-known connection between regular, G-stable
subgroups N of Perm(G) and braces. If »: N — G is given by
»#(n) = n[1g] then one defines an operation o on N via:

nom = s (5(n) xg ().

One then has a brace (N, -, o) with (N, -) < Perm(G, o).

That’s not what’s happening in our construction. ]

goh=nglh] = gy(g~")hi(9).

Our brace is (G, -, o) with (G, o) < Perm(G, -).

This works because both (G, -, o) and (G, o, -) are braces (i.e., (G, -, o)
is a bi-skew brace).
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Braces give solutions to the Yang-Baxter equation

A set-theoretic solution to the Yang-Baxter equation (hereafter, solution
fo the YBE) isaset Band amap R : B x B— B x B such that

(R x idg)(idg x R)(R x idg) = (idg x R)(R x idg)(idg x R) : B® — B®.

A solution R(x,y) = (ox(¥), 7y(x)) is non-degenerate if o and 7, are
bijections, involutive if R? = idgyg.

Generally, a brace (B, -, o) gives non-degenerate solutions:

R(a,b) = (a '(aob),a(aob)oaob)
R~ '(a,b) = ((aob)a',(aob)a—'caob).

Note that R is involutive if and only if (B, -) is abelian.
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Abelian maps and solutions

R(a,b) = (a '(aob),a(aob)oaob)
R '(a,b) = ((aob)a~',(acb)a—' caob).

Example (K., 2021)

For 1) € Ab(G) we get the following solutions with underlying set G:

R(g.h) = (v(g " )Mmi(g), v (hg~ ") h~ 'y (g)gw(g " hp(gh™))
R~"(g.h) = (gv(g " )M(g)g~ ", v (h)gy(h™))

Note. There are two more solutions because (G, -, o) is a bi-skew
brace, but we will not directly address the other two here.
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More maps

Denote by Map(G) the set of all functions on G.
With the binary operations

(a+ B)(9) = a(9)B(9), aB(g9) = (B(9)), g€ G
we have a right near-ring structure on Map(G), i.e.,

@ (Map(G), +) is a (nonabelian) group;
@ “multiplication” is associative; and
@ (a+ B)y=ay+ By forall a, 5,7 € Map(G).
For n € Z we write n € Map(G) to represent g — g".
S0 0,1 € Map(G) are the trivial and identity map respectively.

Note that both Ab(G) and End(G) are contained in Map(G) but are not
subgroups.
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Last year’'s Omaha construction

Let ¢ € Ab(G).

Define {¢p : n >0} by o = —(1 — )" + 1.
For example, 19 = 0, 11 = 1, 1o = 2¢) — 2.
Then ¢, € Ab(G) for n.

Theorem (K., 2022)

Letn> 0 and goph= gyn(g—)mbn(g). Then (G,-,0p) is a brace.
Furthermore, for allm > 0, (G, om,on) IS a brace.

We say G, together with {o, : n > 0}, form a brace block.
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Brace blocks

A brace block is a set B and a family {o, : n € 7}, 7 an index set such
that (B, om, op) is @ brace for all m,n € 7.

We will denote this brace block by (B, {on: n € Z})
Such braces are necessarily bi-skew.

Short examples:
@ (G, {-}) is the trivial brace block.
@ If (G,-,0) is a bi-skew brace, then (G, {-, o}) is a brace block.
@ If v € Ab(G) then (G, {0, : n > 0}) is a brace block.
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Generalizations: C-S 2021 v. 1

The work on abelian maps and brace blocks is generalized in
[Caranti-Stefanello 2021, v. 1].

The condition ¢ € Ab(G) can be relaxed: one can, for example, take
¥ € End(@G) such that ¥ ([G, G]) < Z(G).

We call such maps commutator-central and denote the set of all
commutator central maps by CC(G).

Additionally, [C-S 21 v. 1] replaces ¥, = —(1 — ¥)" + 1 with
¥n € YZ[Y] C Map(G) and creates a brace block with binary
operations given recursively by

—_—~—

gonh=gon_1vYn(g) on_1 hon_1¥n(9),

where go,_1g=1g6.
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Generalizations: B-N-Y 2022

Bardakov, Neshchadim, and Yadav talk about brace systems: a set G
and a graph (V, E) where the vertices are binary operations and
directed edges - — o give braces (G, -, o).

A double-arrow corresponds to a “symmetric brace”, i.e., bi-skew
brace.

They use “A-homomorphisms” to construct brace blocks, which
encompasses [K, 2022] and [C-S 21 v. 1].

These are also constructed recursively: aoj, 1 b = ao; A\g(b) where
Aa : G — Aut(G) satisfies certain properties.
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Motivation for current work

—_—

gonh=gon_1vn(g) on—1 hon_11¥n(9)

aoj 1 b= aoj \a(b)

Thoughts on seeing this construction

@ Given the lack of “natural ordering” in the v,’s, the recursive
nature to these definitions seems “artificial”.

@ It would be nice to write the binary operations non-recursively.

@ A priori, there seems to be no reason why a brace block needs to
be constructed as a sequence.

@ The jump from my prescribed family of maps ¢, = —(1 — )" + 1
to the family in [C-S, 2021, v.1] or [B-N-Y 2022] is a significant
one. Can we generalize even more?
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e Commutator-Central Maps: A New Construction
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The main construction

Throughout, fix ¢y € CC(G).
Note that ) € CC(G) means that ¢(gh) = ¢(hg)z for some z € Z.

Let & be the elements of Map(G) which decompose as a sum of
endomorphisms.

So&={a:a=¢1+¢2+--+ én, ¢i € End(G)} C Map(G).

Note End(G) & & S Map(G) since —1: g+~ g~' ¢ End(G) and, e.g.,
a(lg) =1gforalla € &.

Let v, = ¥, and define

g °a h= Qllfa(g)h%(g)q .
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go.h= gwa(g)h%(g)”

Special cases:

a=0: goah=gh

a=—1: go,h=gy(g)Thy (g) goh [K, 2021]

a=1: go,h=gy(g)h(g)! [C-S21v. 1]
a=73 (1) (¢ goah=gonh [K, 2022]

We also get the C-S 21 v. 1 blocks obtained from elements of ¢Z[y].

Theorem (K, c. 2023)

Lety € CC(G), a,B € &. Then (G, o4, 0p) Is a brace.
In other words,
(G, {on: a€&})

is a brace block.
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goah= g'¢’a(g)h'¢)a(g)_1

More observations:

@ go, h=goghforallg,hc Gif and only if (o — 8)(G) < Z.
@ If « and 3 consist of the same endomorphisms, used the same
number of times, then go, h=gog hforall g,h e G.
For example,

(01 + 02) — (62 + 61)(9) = ¥ (61(9)02(9) (92(g)1(9)) ")
=1 (#1(9)02(9)1(9) "02(9) ") € Z

So the ordering of the endomorphisms in an element of & doesn’t
matter: we can think of & as the free abelian group generated by
End(G).
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Back to the YBE

Each brace (G, o,, 0g) in a brace block gives (potentially) two solutions
to the YBE:

R(g,h) = (g oa (gop h),goa(gosh)osgogh)
R™'(g9,h) = ((9op h) oa G.(g 05 h) 0a g oz g og )

where go, g=gos g = 1g.

These can be written out in terms of v, 13.
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e Hopf-Galois Structures
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gos h=gus(g)hs(g)!

Using ¢ € CC(G), 8 € & we get a regular, G-stable subgroup
N < Perm(G) in a way analogous to what we had previously:

N={n{’: g € G} with

11 = gos h = gus(g)hs(g) .

That is,

g = Mgvs())p(¥5(9))
= M9)C(v5(9)),

with C : G — Inn(G) being the conjugation map.

Alan Koch (Agnes Scott College) 21/38



Hopf-Galois structure: ngg)[h] = gvs(g)hs(g)

Let L/K be a Galois extension with Gal(L/K) = G.
Let N = N3 be as above (depending on ¥, ).
Then G acts on L[N] by

k(p(B)y _ (8)

Let H = L[N]C. Then L/K is an H-Galois extension.

So L/K has Hopf-Galois structures of type isomorphic to (G, og) for all
B e&.

Fact. Gp-Like(H) = {1 € N: g5(9) € Z} = {p(9™") : gvs(9) € Z}.
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More HGS

Since (G, oq, 03) is a brace, we have more Hopf-Galois structures,
though not necessarily on the same extension L/K.

We have N3 = {n!(f) : g € G} < Perm(G) = Perm(G, o,,) is regular.

; i -k (B) _ (B _ 3 T
ltis also (G, o, )-stable: “ng”’ = Neon(gos®) — Nkouh)osk Kook =1g.

For fixed 5 € &, N3 < Perm(G, o,,) is regular, (G, o, )-stable and hence
yields a Hopf-Galois structure on each (G, o, )-Galois extension,
a€é.
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e Special Case: Nilpotency Class Two
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Nilpotency class two

We say G (still nonabelian) has nilpotency class two if [G, G] < Z.
Examples:
@ D,, dihedral group, order 8: [G, G] = Z = (r?);
@ Qg, quaternion group: [G, G] = Z is the subgroup of order 2;
@ H(p), the Heisenberg group mod p: [G, G] = Z cyclic, order p;
e extraspecial groups: p-groups with Z = C, and G/Z = C}™"
(1Gl = p").

Nilpotency class two

We have ¢ = 1 € CC(G), and there is no reason to consider any other
choice of 1.

The brace block with ¢» = 1 will contain every brace block on G starting
with some choice of ) € CC(G).
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Recall: for (B, -, o) a brace we have (B, ', o) is also a brace, where
a'b=b-aforall a,be B. We call (B, -, o) the opposite brace to
(B,-,0).

The almost trivial brace is the opposite brace to the trivial brace (and
vice versa).

If we choose 1 = 1 then we can pick « = —1 and obtain
goa h=ga(g)ha(g)™' =99 'hg=hg=g-'h.
As choosing o = 0 € & always gives the trivial brace, we obtain:

If G has nilpotency class two, then any maximal brace block contains
both the trivial brace and the almost trivial brace on G. J
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An equivalent opposite

What about opposites for (G, -, 04)?

A general observation
Given (B, -, o) define a binary operation & by

asb=(a'ob™") " abeB.

Then (B, -,3) is a brace, and (B, -,8) = (B, ,o)viaa~ a'.

If G is any finite nonabelian group, ¢ € CC(G), a € & we have
géh= (g_1 og h_1)_1
= (97 "alg7 A (@) )
=1a(g )a(g™") g
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gdéh= z/”a(g_1 )h'¢’a(g_1 )_1 g

Assume G has nilpotency class two, and let ¢» = 1 € CC(G).
So

gdah=a(g ha(g™ ") 'g.
Fora=¢1+---+ore€8,leta* =¢r+---+¢1 €6.
LetB=—-1+a(-1)=-1-a*c & Then 3(g9) =g 'a(g~") and

gos h=gB(g)hB(g)™"

=g(g (g Nh(g (g™ "))

=a(g Nha(g™") g
e gaa h

If » = 1 then (G, -, 0,) is in a brace block if and only if (G, -, 8, ) is.

This does not happen for general ¢ (hence, for general G).
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Example: Qg

Let L/K be a Galois extension, Galois group G = Qs.
Write Qg = (a,b: a* = b* = 8?b? = abab™' = 1g).

We will cast the results to follow in terms of regular subgroups rather
than braces.

Regular subgroups of Perm(Qg) are classified in [Taylor-Truman,
2019]. There are 22 subgroups:

Type Co x Cs x Cy: 2 structures
Type C4 x Co: 6 structures
Type Cg: 6 structures

Type Qg: 2 structures

Type D,: 6 structures
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Some endomorphisms

Let s,t € {a, b,ab}, s # t. Consider the following elements of End(G):
[0 &1 o b3 oa

1g st &t t s°.

1g s° &8 st st

S
t

For a € & given by:

Qa=¢p=0=N=)\G) =G

Q@ a=1=N=p(G) =G

Q o =¢1 = N=(\S)p(t), \(8?), \(t)p(st)) = Cy x Co x Co.
Q a=d¢o+¢d3=N=()\S),p(t) = C4 x Co.

Q a=¢4s=N=(p(s),\(s)p(t)) = Dy.

Q a=-1-¢4s=N=(\(s),A(t)o(s)) = Da.

It turns out that by varying s, t we get all regular, G-stable subgroups of
Perm(Qg) except those of cyclic type.

This gives rise to a brace block with 16 different operations.
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A brace block of size 16

| &1 2 b3 ¢4
s|s%t st t s° N={\Ngng))p(a(9)): g < G}
t| s® s st st

Q@ a=0=N=XG)
Q a=1=N=p(G)
Qa=¢1=>N= <A(S)p( ) A(8%), A(t)p(st)) = Ca x Cp x Co.
Q a =+ d3= N=(\(8),p(t)) = Cy x Co.

Q o =4 = N=(p(s), \(s)p(t)) = Da.

Q a=-1-0¢4=N=(X(s),A(t)p(s)) = Ds.
Remarks.

@ This block is maximal: we cannot pick « to get N = Cg since

IA(9¥a(9))p(Va(9))] < lem(|g¥a(9)]; [¥a(9)))-
@ Neither (4) nor (6) above can be obtained with some a € End(Qg).

IIZ

IIZ
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© Next
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The opposite

Recall: if G has nilpotency class two, then 3, is in the brace block
(G, {oq : a € &Y}) (setting ¢ = 1).

For general G, there are other cases where this may occur, a simple
example being (G, {-,'}).

If the nilpotency class is greater than 2, is there a condition to
determine when &, will be in a brace block containing (G, -, 0,)? J

Such a condition would presumably depend not just on G but on the
particular choice of .

(G, o, 08) (or (G, 04,05))7?

il ()U

Under what conditions will a brace block contain both (G, o, 03) and J
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Do we find all brace blocks with underlying group G?

No.

Example
Let G=S,, n>5. We have [Sy, Sp] = An, Z = {¢}.
If 1» € CC(G) then Aj, C ker 1.
So
€A

W—):{i Z¢A:, TES, =1
Let ¢, ¢’ € CC(G) be such that ¥(G) = ((12)), ¥'(G) = ((34)).
Since ¥, (G) C ¢¥(G) = ((12)) we see that ¢/ # 1, for any a € &.
So the circle operations given by v, ¢’ do not appear in the same
brace block.
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To reinterate: no

(G) = ((12)) := (), ¥'(G) = ((34)) := (1)
Denote the corresponding binary operations by o and x respectively.
Clearly, (G, -, o) and (G, -, x) are biskew braces (since ¢,v’ € Ab(G)).

However, we can show that (G, o, x) is a biskew brace as well: it
follows from the fact that 77" = 7/r.

Thus, (G, {-,0,x}) is a brace block.
This quickly generalizes to brace blocks with up to 2.7/2) groups, each
isomorphic to S, or A, x Co.

Can this be extended in a reasonable way to find all brace blocks? )

If so, it would also find all bi-skew braces.
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Opportunity: HGS of abelian type

In the classic, recursive constructions, only one abelian group arises in
a brace block: if (G, op) is abelian, then (G, op41) = (G, op).

Thus we could not obtain any nontrivial braces (B, -, o) with both (B, -)
and (B, o) abelian.

Equivalently, we could not use the theory to find Hopf-Galois structures
on an abelian extension of abelian type.

It is possible now.

Returnto G = Qg = (a, b). Let ¢1(a) = @b, ¢1(b) = &, ¢s(a) =
ab, ¢2(b) = &, ¢s(a) = b, ¢3(b) = ab.

Let o = ¢4 and 8 = ¢ + ¢3.

Then (G, Oa) = C, x Co x Cr and (G, 05) >~ Gy x Co.

This gives a HGS on a C, x G, x C, extension of type C4 x C» and
vice versa. )
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Problem: & is messy

& is very large.

Example

There are 30 HGS on an Ss-extension [Carnahan-Childs, 99], hence at
most 30 bi-skew braces (G, -, o) with (G, ) = Ss.

Lety =1.

End(Ss) has 146 elements, including 120 automorphisms.

So & contains, among other things, all sums of elements of End(Ss).
So & has many more than 2746 ~ 10** elements.

In general, many « € & give identical braces.
It would be good to have an effective way to pick “different” o’s.
Say &/ ~,where a ~ = p(a— ) C Z.
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Thank you.
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